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Abstract—The ever increasing scale of modern data center
demands more effective optimizations, as even a small percentage
of performance improvement can result in a significant reduction
in data-center cost and its environmental footprint. However, the
diverse set of workloads running in data centers also challenges
the scalability of optimization solutions. Profile-guided optimiza-
tion (PGO) is a promising technique to improve application
performance. Sampling-based PGO is widely used in data-center
applications due to its low operational overhead, but the perfor-
mance gains are not as substantial as the instrumentation-based
counterpart. The high operational overhead of instrumentation-
based PGO, on the other hand, hinders its large-scale adoption,
despite its superior performance gains.

In this paper, we propose CSSPGO, a context-sensitive
sampling-based PGO framework with pseudo-instrumentation.
CSSPGO offers a more balanced solution to push sampling-based
PGO performance closer to instrumentation-based PGO while
maintaining minimal operational overhead. It leverages pseudo-
instrumentation to improve profile quality without incurring
the overhead of traditional instrumentation. It also enriches
profile with context-sensitivity to aid more effective optimizations
through a novel profiling methodology using synchronized LBR
and stack sampling. CSSPGO is now used to optimize over 75%
of Meta’s data center CPU cycles. Our evaluation with production
workloads demonstrates 1%-5% performance improvement on
top of state-of-the-art sampling-based PGO.

Index Terms—Profile Guided Optimization, Feedback Directed
Optimization, Sampling, Instrumentation, Context-sensitive Pro-
filing, Compiler

I. INTRODUCTION

Data centers and their compute capacity in particular, have
become an integral part of modern world infrastructure. They
underpin social networks, search engines, AI tools and many
other services that people around the world use on a daily
basis. Due to the broad spectrum of services they power and
the vast population they serve, data centers nowadays have
reached unprecedented scale [1]. It’s imperative to optimize
data-center applications to minimize both capital expenditure
for service providers as well as their environment footprint on
power consumption.

Profile-guided optimization (PGO) is a compiler technology
widely used to optimize data-center applications. However, the
use of PGO often involves a trade-off between operational
overhead and peak performance. This is because, while
instrumentation-based PGO provides best performance, it
requires special setup and dedicated profiling, hence can be

prohibitive for large-scale adoption. Sampling-based PGO, on
the other hand, has low entry barriers but it does not deliver
the same performance as instrumentation-based PGO.

Context-sensitive sampling-based PGO with pseudo-
instrumentation (CSSPGO) proposed in this paper provides an
alternative solution with better performance than traditional
sampling-based PGO while maintaining low operational over-
head.

A. Motivation

Large data centers often run a diverse set of workloads. Given
that most of the workloads are compute-bound, optimizing
CPU performance with compiler optimizations and PGO
in particular has proven to be very effective. Within Meta,
there are thousands of different back-end services running
to serve its users. This requires optimizations to be service-
agnostic and have low-operational cost to be used across the
entire server fleet, and PGO is no exception. While the most
performant variant of PGO is instrumentation PGO, it comes
with significant operational complexity. Instrumentation adds
non-trivial run-time overhead, so profiling instrumented binary
requires special setup for each service, and the instrumented
binary usually cannot be run in production environment. Such
limitation significantly hinders its adoption.

With sampling-based PGO, profiling can be performed
directly in the production environment, and the collected profile
can be fed to compilation continuously, making it a low-
overhead, easily scalable PGO solution for data-center applica-
tions. AutoFDO [2] is an example of sampling-based PGO that
is widely used to optimize data-center applications. It often
delivers double-digit percentage of performance improvement.
Unfortunately, profile data from sampling is less accurate than
the ones from instrumentation, and as a result its performance
also lags behind the instrumentation counterpart.

To achieve better performance on top of sampling-based
PGO, post-link optimizers like BOLT [14] and Propeller [16]
have been explored and adopted. Unlike instrumentation-based
PGO, BOLT and Propeller are also sampling-based so they
can profile directly in production environments. However, they
still require an additional profiling and build iteration which
lengthen release pipelines and hinders adoption. At Meta, most
of the compute-bound services are optimized with sampling-
based PGO, while only 1/7 of them are also optimized by



Fig. 1: Components of PGO compilation that produce and consume profile data

BOLT. There is only one service optimized by instrumentation-
based PGO, and the operational overhead has been a major
pain point that motivates the service owner to also explore
migrating to sampling-based PGO.

With sampling-based PGO being the most leveraged opti-
mization tool, there is strong interest in improving its capability
so it can approach instrumentation-based PGO’s performance.
This motivated a systemic investigation into current sampling-
based PGO’s weakness, which in turn led to the introduction
of an enhanced sampling-based PGO with context-sensitive
profiling and pseudo-instrumentation (CSSPGO).

B. Contribution

In this paper, we analyze different approaches to PGO,
with a focus on the trade-off between profile quality, peak
performance and operational overhead. We mitigate profile
quality issues, which is the biggest weakness of sampling-
based PGO, by introducing flexible pseudo-instrumentation.
We also take advantage of sample profiling to achieve context-
sensitive profiling with no additional overhead. With pseudo-
instrumentation and context-sensitive profiling combined, we
demonstrate that CSSPGO can approach instrumentation-based
PGO performance. Our main contributions are:

• We evaluate performance and profile quality of sampling-
based PGO and instrumentation-based PGO on large server
workloads.

• We introduce pseudo-instrumentation as a flexible solu-
tion for low overhead, high quality profile correlation
mechanism.

• We introduce a sampling-based profiler to enrich profile
with context-sensitivity, and a context-sensitive pre-inliner
to achieve more selective inlining and better post-inline
profile quality.

• We propose CSSPGO, an alternative sampling-based
PGO system using pseudo-instrumentation and context-
sensitive profiling and demonstrated it can achieve better
profile quality and better performance over state-of-the-art
sampling-based PGO.

II. BACKGROUND

With PGO, optimizations can often improve program perfor-
mance by additional double-digit percentage. Accurate control
flow profile enables profile-guided optimizations to be more

effective. For instance, the inliner can differentiate hot function
calls from cold function calls and aggressively inline the
hot ones only without bloating overall code size. Branch
instructions can be inverted to maximize streamlined execution,
and code layout can be improved to favor locality. Many other
optimizations, such as loop unrolling or vectorization, can
be better informed when they make decision on performance
versus code-size trade-off.

There are two common approaches to obtaining program
profile for PGO: instrumentation-based and sampling-based.
Instrumentation-based PGO inserts instructions (probes) that
increment pre-allocated counters to track accurate execution
counts for different paths of a program during run time.
Sampling-based PGO, on the other hand, uses hardware support
to sample the value of the instruction pointer to approximate
execution frequencies for different parts of a program.

Quality of profile is key to the effectiveness of PGO.
As the compiler optimizations form a sequential pipeline,
each optimization not only consumes profile data but also
produces modified profile data according to the transformations
it makes for the next optimization. Therefore, maintaining
profile accuracy throughout the optimization pipeline is as
important as obtaining high-quality profile initially. Fig. 1
shows a componentized view of PGO, and how each component
affects profile quality as profile flows through.

PGO would reach theoretical upper-bound performance if
the input profile to every optimization is accurate. In reality,
this is not achievable due to system limitations and engineering
maturity. Different variants of PGO attempt to get closer to
that upper-bound with mitigation, often accompanied with
significant cost on operational overhead and usability. In
the remainder of this section, we describe the two most
important components contributing to high quality profile, 1)
profile correlation, 2) profile maintenance, with their respective
challenges and mitigation from PGO variants.

A. Profile Correlation

To capture the program behavior in production environments,
profile needs to be collected from an optimized binary. There-
fore, the first step of PGO is associating profile data from the
optimized binary to the un-optimized IR, so that the following
optimization passes can consume it. Such translation is termed



”profile correlation”. Sampling-based PGO uses debug informa-
tion (such as DWARF [23]) as correlation anchors, so it neither
prevents any optimizations nor adds run-time overhead to the
profiling binary. However it suffers from inaccurate correlation
with aggressive optimizations, as they often fail to maintain
the debug information accurately. Aggressive optimizations
can adversely impact the accuracy of profile correlation. The
challenge is that when two blocks are merged, for example,
execution count from merged binary block cannot be accurately
correlated back to the two pre-merge IR blocks. At the cost
of a slower instrumented binary, instrumentation-based PGO
mitigates profile correlation inaccuracy with instrumented
probes serving as optimization barriers, therefore control flow
optimizations involving code merge are largely prevented since
blocks with probes incrementing different counters cannot
be merged. On top of less aggressive optimizations, counter
increments during run time also further slow down instrumented
binary, often by 50%+ and to the point that it alters the workflow
by requiring special profiling setup, which incur significant
operational overhead.

After profile is correlated onto un-optimized IR, there is often
a profile inference stage which aims to fix profile inaccuracies
to the extent possible. Profile inference is particularly useful
for sampling-based PGO as it can smooth out the profile incon-
sistencies caused by hardware sampling [9]. Advanced profile
inference [10] can also help mitigate profile correlation issues
caused by aggressive optimizations, but the resulting profile
quality is usually still not as good as that of instrumentation-
based PGO.

B. Profile Maintenance

Once the profile correlation and inference is done, the
profile will be annotated in the IR and used by optimizations
sequentially. After each optimizations, profile needs to be
adjusted to reflect control flow graph changes if any: if a loop is
unrolled by a factor of 4, profile counts for loop body will need
to be scaled down by 4 as well. While profile maintenance
for optimizations like loop unroll, vectorization is more of
a mechanic update and quality of such maintenance mostly
depends on engineering maturity of an implementation, profile
maintenance for inlining remains a challenging problem.

After inlining, the accurate profile of an inlinee is the slice
of the original callee profile along the inlined calling context.
Maintaining accurate post-inline profile requires the input
profile to be context-sensitive. Ball et al. [7], [11] proposed
a profiling scheme to obtain context-sensitive profile through
instrumentation. However such technique is not used by PGO
of mainstream compilers due to its complexity and extra
run-time overhead. Most PGO implementations do not use
context-sensitive profiling, hence they suffer from inferior
post-inline profile quality, which in turn makes post-inline
PGO optimizations like register allocation and code layout less
effective. Some implementations rely on the inlining of the
profiling build to generate a partial context-sensitive profile
[2]. However, this technique requires inlining decisions to be
identical between the profiling build and the optimizing build,

which is hardly achievable in practice. Hence the context-
sensitivity it brings into profile is limited.

Motivated by the profile quality issue after inlining,
Panchenko et al. developed BOLT [14], a post-link binary
optimizer, which managed to achieve better performance on
top of compiler PGO for server workloads. Propeller [16] is
another attempt at binary optimizer with similar motivation.
There are also efforts to use a separate late-stage profile after
inlining from within the compiler [20]. Most solutions used
today involve a late-stage profile either by the compiler itself or
by a post-link optimizer, which require an additional profiling
and re-optimize iteration that can be prohibitive for large-scale
adoption.

III. SAMPLING-BASED CONTEXT-SENSITIVE PGO WITH
PSEUDO-INSTRUMENTATION

This section describes two innovations aimed at improving
quality and optimization effectiveness for sampling-based
PGO, 1) pseudo-instrumentation, 2) context-sensitive sampling-
based profiling, and an enhanced sampling-based PGO system,
CSSPGO. CSSPGO leverages the two innovations to tackle
the challenges mentioned above for profile correlation and
profile maintenance, and to achieve better performance while
maintaining low operational overhead.

We first introduce pseudo-instrumentation as an alternative
profile-correlation mechanism that can achieve better profile
quality than the debug-location-based correlation mechanism
used by today’s sampling-based PGO. While our attempt
focuses on getting the best possible profile quality with near-
zero run-time cost, we emphasize that pseudo-instrumentation
also provides a flexible framework for PGO implementation
to achieve the desired balance between run-time overhead and
profile-correlation quality.

We also describe a novel sampling-based context-sensitive
profiling methodology to obtain context-sensitive binary profile
without requiring additional late stage profiling. The new
profiler takes advantage of synchronized LBR (Last Branch
Record) [24] and stack sampling to recover and synthesize
calling context for each profiled execution. On top of context-
sensitive profiler, we propose a pre-inliner that can work
with modern scalable LTO [12], [13] to make global context-
sensitive inline decisions. The combination of new context-
sensitive profiler and inliner achieves better post-inline profile
quality which helps late optimizations, in addition to driving
more selective inlining decisions.

Since both pseudo-instrumentation and context-sensitive
profiling are transparent to users, unlike instrumentation-based
PGO or post-link optimizers, CSSPGO is as low cost as today’s
sampling-based PGO. When deployed to production, CSSPGO
shares the exact same workflow and setup as widely adopted
sampling-based PGO solutions like AutoFDO.

A. Pseudo-instrumentation

An essential component of sampling-based PGO pipeline is
profile correlation. As shown in Fig. 1, it is responsible for
mapping samples on fully optimized binary back to source or



Fig. 2: Profile correlation anchors comparison for different PGO

un-optimized IR locations so that they can be consumed by the
compiler in the following compilation. Profile correlation used
by today’s sampling-based PGO is based on symbolization
with debug information. While this approach has the benefit of
reusing existing debug info infrastructure, it is also the main
source of profile inaccuracies due to degraded quality of debug
info through a fully-loaded optimization pipeline [2]. Source
drifting is another cause of profile inaccuracies, where a minor
change to source code can cause profile to be unusable.

To mitigate the aforementioned issues, we present pseudo-
instrumentation, a flexible, low-overhead instrumentation tech-
nique that aims to be more resilient to compiler optimizations
and minor source changes. It instruments the program with
pseudo-probes that serve the purpose of a profile-correlation
anchor for mapping a sampled execution to the IR. Its resilience
to optimization is achieved by its representation as a standalone
intrinsic instruction in compiler IR, as opposed to debug
information attached to instructions. Such representation makes
it behave like traditional instrumentation and helps preserve
original control flow for accurate correlation. However, it is
”pseudo” because unlike traditional instrumentation where the
instrumented probes are translated to machine instructions that
increment profile counter at run time, pseudo-probes do not
result in any additional machine instructions. This makes it
significantly lower-overhead than traditional instrumentation.
In addition, the intrinsic representation offers flexibility for
finer tuning to achieve a desired balance between overhead
and accuracy. If an implementation can tolerate higher run-
time overhead, it can choose to make pseudo-probe a stronger
optimization barrier to better preserve original control flow and
vice versa.

A pseudo-probe is inserted as an intrinsic into each basic
block of the control-flow graph at an early stage of the optimiza-
tion pipeline before any aggressive transformations. This is to
minimize the effect of compiler optimization so instrumentation
can be done on a stable IR. After insertion, pseudo-probes
live in the form of intrinsic instructions throughout the whole
compilation, at the end of which they are materialized as

metadata against the location of the physical instruction next
to it in the generated binary. Such metadata will be used later
on during profile generation as correlation anchors, so that
samples collected at those associated physical instructions can
be used on the IR. The metadata is self-contained, i.e., no
relocation references to or from the rest part of the binary,
therefore it can be split out of the object files to minimize
the impact on linking large binaries. The metadata will also
not be loaded at run time, so it should have little impact on
application performance.

We use a simple example to demonstrate how pseudo-
probe works as correlation anchor in comparison with existing
methodology. Fig. 2 lists the IR correlation anchors used by
different PGO and their generated code in the LLVM compiler
for an if-else construct. With traditional instrumentation-based
PGO, user program is instrumented with a special intrinsic in-
struction llvm.instrprof.increment, which translates
to a physical machine instruction inc. The intrinsic takes a
counter identifier as its parameter along with other parameters
omitted from the example. Note that counter increment at
run time can slow down program execution significantly. On
the contrary, existing sampling-based PGO does not need any
instrumentation at all, instead it relies on debug info in both
IR and binary to perform profile correlation. Therefore it
is zero-overhead but at the cost of inferior profile quality.
CSSPGO’s pseudo-instrumentation uses intrinsic instructions
to represent correlation anchors on the IR but materializes them
as metadata in binary, so it can achieve better profile quality
while maintaining low overhead.

Even if pseudo-probe does not translate into any machine
instruction, it may still incur run-time cost because it may
prevent some optimizations. In our implementation, we design
pseudo-probe to block as little optimizations as possible
to prioritize low overhead over high profile accuracy, by
implementing it as a memory intrinsic with a semantics of
accessing memory locations that are inaccessible by the user
code. Therefore it does not interfere with user code which
the optimizer is free to optimize. The implementation also



(a) Inaccurate post-inline counts w/ regular profile (b) Accurate post-inline counts w/ context-sensitive profile
Fig. 3: Relationship between context-sensitivity and post-inline profile accuracy

Fig. 4: Code showing the benefit of context-sensitive profile

disallows the optimizer to move pseudo-probe around or drop
it in a way that its execution frequencies will change. While
such semantics typically does not affect optimizations such as
code motion, inlining or loop vectorization, it may still block
control-flow optimizations such as if-convert and tail merge. To
achieve near-zero cost, we fine-tune a few critical optimizations,
including if-convert, machine sink and instruction scheduling,
to be unblocked by pseudo-probe.

We now discuss how pseudo-instrumentation can mitigate
profile inaccuracies caused by common compiler optimizations.
In general, there are two types of optimizations that can damage
profile quality:

a) Code Merge: Optimizations that perform code merge,
such as tail merge, can cause profile inaccuracy because there
is no reasonable way to distribute merged profile counts back
to the original program locations. Such optimizations can be
blocked by pseudo-probes due to their different signatures
for different blocks, hence the original control flow can be
preserved.

b) Code Duplication: A statement in source program can
compile into multiple binary instructions. When optimizations,
such as loop invariant code motion, move some of them into
a colder code region, those instructions will have different
execution frequencies. Given that optimization tends to move
instructions into colder region instead of hotter region, correla-
tion techniques using debug info take the maximum execution
frequency from those instructions. Unfortunately, such heuristic

cannot handle optimizations involving code duplication where
the frequency of each duplicated instruction should be added
together. Dwarf discriminators [23] can be used to mark certain
code duplication as a mitigation. However, it’s not scalable
since inserting annotation for all possible code duplication in
compiler is not practical. Unlike the one-to-many mapping
between the source location and the generated instructions,
pseudo-probes maintains one-to-one mapping. This allows
adding frequencies of copied probes to derive accurate original
frequency.

Besides compiler optimizations, source code changes can
also introduce profile inaccuracies for the existing sampling-
based PGO. For instance, a minor change in the source code
such as adding or removing a program comment, can cause
location of subsequent code to shift. Consequently, profile
corresponding to previous source may become obsolete to
the new source. While the original AutoFDO work [2] also
attempts to mitigate such source code drift issue by using
line offset instead of the control flow for profile correlation,
the AutoFDO profile can contain partially correct profile
information. In practice, we have observed minor source drift
causing 8% performance loss for a server workload. This
problem is mitigated with pseudo-instrumentation where a
checksum reflecting the shape of the IR control-flow graph
(CFG) is computed and persisted in the profile. A CFG change
would be detected as a mismatch between the profile checksum
and the IR checksum, but any changes not altering CFG, such
as adding comments, can be handled transparently.

B. Context-sensitive Sampling-based PGO
Context-sensitive profile can provide fine grain insights into

control flow of a function based on different calling context.
This is especially useful in maintaining accurate post-inline
profile and in driving selective inline decisions. As mentioned
in section II, post-inline profile quality is critical for the
effectiveness of late stage optimizations like register allocation
and code layout. In this section, we first demonstrate how
context-sensitive profile can help maintain accurate post-inline
profile with a simple example. Then we describe a novel
context-sensitive sample profiler. Unlike existing solutions, our
approach does not require separate post-inline profile, nor does
it rely on inlining of profiling build. Lastly, we introduce an
inlining scheme that can work with modern scalable LTO, like



ThinLTO [12] in LLVM, to fully leverage richer input profile
and achieve better inline decision as well as more accurate post-
inline profile in coordination with context-sensitive profiling.

Fig. 3 illustrates post-inline profile accuracy difference
with and without context-sensitive profile using a simple
example shown in Fig. 4. We can see that scalarAdd can
only be called from addVectorHead->scalarOp
path, and scalarSub can only be called from
subVectorHead->scalarOp path. However, without
context-sensitive profile, such insight won’t be available. When
looking at context-insensitive profile for scalarOp, we only
know that it calls both scalarAdd and scalarSub. As a
result, if we end up inlining all function calls, we can only
scale the call counts for scalarOp, which is inaccurate
as shown in Fig. 3a. Such inaccurate post-inline profile can
mislead later optimizations, potentially causing sub-optimal
spill placement and more branches on hot paths.

If context-sensitive profile is available, compiler would be
able to see two different profiles for scalarOp based on the
calling context, i.e. whether it’s called by addVectorHead
or subVectorHead. This enables the inliner to maintain
accurate post-inline counts like what’s shown in Fig. 3b. As
evident by the success of BOLT [14], accurate post-inline
can improve performance through more effective late stage
optimizations.

a) Context-sensitive Sample Profiler: We present a low-
cost sample profiling methodology to obtain context-sensitive
profile. With LBR (Last Branch Record) profiling, an interrupt
is triggered each time the PMU (Performance Monitoring Unit)
underflows, and we take a snapshot of LBR, consisting of
16 or 32 pairs of source and target addresses for consecutive
taken branches, from which we can derive a sequence of linear
execution paths. By accumulating the linear execution paths
from all samples, we can then construct control-flow profile
for functions, which is the input for today’s sampling-based
PGO like AutoFDO. On top of LBR sampling, our proposed
profiling method also enables synchronized stack sampling to
obtain calling context for each LBR sample, so each time when
PMU underflow triggers an interrupt, in addition to taking a
snapshot of LBR, a stack sample is also recorded. Fig. 5 shows
an example of synchronized LBR and call-stack sample.

Given that stack sample and LBR sample are collected at
the same time, for the last branch of an LBR sample, the
collected stack sample naturally identifies its calling context.
If all branches in an LBR sample are from the same frame, i.e.
the LBR sample does not contain any call or return, they would
share the same calling context identified by the stack sample. If
an LBR sample contains calls or returns, we need to process the
stack sample to unwind the call or return from LBR in reverse
order to recover the accurate calling context for branches before
the call or return. We also need to take implicit call and
return from inlining into account when recovering accurate
calling context. Specifically, for a linear execution path without
branches, we need to check for change of inlined stack and
adjust context accordingly. The process of recovering calling
context for each LBR branch is illustrated in Algorithm 1. Note

that LBR branches are processed in reverse execution order.

Algorithm 1 Reconstruct context from LBR and stack sample
Input: LBRBranches, Stack
Output: RangesWithContext

1: for CurrBranch in LBRBranches do
2: if CurrBranch is CALL then
3: PopLeafFrames(Stack, 1)
4: else if CurrBranch is RETURN then
5: Frame ← GetFrameFromAddr(CurrBranch.Source)
6: Stack ← PushLeafFrames(Stack, Frame)
7: else if PrevBranch is NULL then
8: PrevBranch ← CurrBranch
9: continue

10: end if
11: Context ← ExpandInlinedFrames(Stack)
12: BeginAddr ← EndAddr ← CurrBranch.Target
13: EndLimit ← NextInstrAddr(PrevBranch.Source)
14: while EndAddr <= EndLimit do
15: BeginFrames ← GetInlinedFrames(BeginAddr)
16: EndFrames ← GetInlinedFrames(EndAddr)
17: SameContext ← BeginFrames equal EndFrames
18: if SameContext and EndAddr is not EndLimit then
19: EndAddr ← NextInstrAddr(EndAddr)
20: continue
21: end if
22: Context ← PushLeafFrames(Context, BeginFrames)
23: RangesWithContext[BeginAddr, EndAddr-1] = Context
24: PopLeafFrames(Context, BeginFrames.size)
25: BeginAddr ← EndAddr
26: EndAddr ← NextInstrAddr(EndAddr)
27: end while
28: PrevBranch ← CurrBranch
29: end for

In order to recover accurate context, special care is needed
to mitigate a few challenges in a practical implementation:

• Synchronizing LBR and stack sample: The reconstruction
of calling context is based on the assumption that
the sampled stack is perfectly aligned with the frame
that the last branch’s target points to. In practice, this
is not guaranteed even if LBR and stack sample are
taken from the same interrupt. Due to sampling skid
[3], we observed that stack sample can sometimes
lag behind LBR sample by one frame. Fortunately,
PEBS (Precise Event-Based Sampling) [4] can be used
to eliminate the skid so both stack sample and LBR
sample are always synchronized. With linux perf [22],
using perf record -g --call-graph fp -e
br_inst_retired.near_taken:upp ... can
enable level-2 precision and achieve synchronous LBR
and stack sampling.

• Reliable stack sampling: In order to obtain accurate
stack samples, frame pointer is needed. However, some
optimizations can destroy frame chain. The most common
ones are frame pointer omission (FPO) and tail call elim-
ination (TCE). FPO is commonly disabled in production
environment, because having accurate stack sample is
critical not only for PGO but also for debugging. TCE
can also cause missing frames for immediate caller of
a tail call. As a mitigation, a missing frame inferrer is
introduced to recover caller frames of consecutive tail
calls whenever possible. The idea is to build a dynamic



Fig. 5: Synchronized LBR and call stack sample

call graph that consists of only tail call edges constructed
from LBR samples and do a DFS-search on that graph
to find a unique path for a given pair of parent and child
frame. The unique tail-call path is then used to fill in the
missing frames between the source and target frame. Note
that there could be multiple tail-call paths available for a
give pair of frames, in which case the inference will fail.
In practice it is observed that more than two-thirds of the
missing tail call frames can be recovered.

• Scalability: Context-sensitive profile contains multiple
versions of profile for a function when there are multiple
possible calling contexts. So it is expected to be larger
in size than context-insensitive profile. However, larger
profile can lead to slower profile generation and slower
PGO compilation as it takes longer to read/write and
process. For programs with a dense dynamic call graph,
profile size increase due to context-sensitivity can be on
the order of 10x, therefore incurring significant overhead.
Since cold functions are unlikely to be inlined, we
mitigate the profile size increase by only keeping context-
sensitive profile for hot functions and trim profiles for
cold functions to be context-insensitive. Experiment shows
that our mitigation can produce context-sensitive profile
comparable in size to regular profile, without loosing its
benefit.

The above profiling methodology can obtain a context-
sensitive profile without a separate late stage profile, hence
it is transparent to users. It also does not rely on inlining of
previous build, making it a practical and effective solution.

b) Context-sensitive Pre-inliner: Context-sensitive profile
can enable more selective inlining and more accurate post-inline
profile as mentioned above. In practice, it needs a cooperating
inliner that can fully leverage richer profile to reach its full
potential. In this section, we describe a context-sensitive pre-
inliner that can be retrofitted to compiler implementations
without a proper profile-guided inliner, and is also effective
in mitigating challenges imposed by modern scalable whole-
program optimization framework.

In order to have accurate profile for a function, a compiler
needs to take into account the inline decisions for all calls to
this function. If it is inlined at one call site, context-sensitive
profile along that call path should be excluded in the function’s
base profile; otherwise, the corresponding context-sensitive
profile should be merged back into that function’s base profile.
This implies two requirements for the inliner: 1) it needs to
visit call sites and make inlining decisions in call graph’s
top-down order; 2) it needs to be able to move and merge

context-sensitive profile in the call graph based on inlining
decision. Meeting the two requirements can be challenging as
we explain below.

Top-down order is important for profile-guided inlining
because it allows specialization of inline decisions based on call-
ing context and its associated context-sensitive profile. In the ex-
ample shown in Fig. 3, given context-sensitive profile (Fig. 3b),
a top-down inliner would be able to inline only scalarAdd,
but not scalarSub into scalarOp if the top level inliner
is addVectorHead. This leads to more selective inlining.
However, it is not achievable with a bottom-up inliner because
the decision to inline scalarAdd or scalarSub into
scalarOp is made before the decision to inline scalarOp
into addVectorHead or subVectorHead; additionally,
once the inlining decision for scalarOp is made, both
addVectorHead and subVectorHead will have to use
the same scalarOp as it does not support specialization
based on calling context.

For many compiler implementations, initially they are not
built with profile-guided inlining as a priority, hence they do not
have a top-down inliner. LLVM is an example where inlining
happens in bottom-up order as part of its call graph (CGSCC)
pass. For a mature compiler, it is difficult to make fundamental
changes to inlining order as inliner is often coupled with other
optimizations. AutoFDO mitigated this problem by adding an
early inliner for profile-guided top-down inlining. However,
early inliner operates on less optimized IR, so it is often
challenged by inaccurate inlining cost estimation and needs to
be conservative.

Modern whole-program or cross-module optimization frame-
works like ThinLTO [12] or LIPO [13] pose another challenge
to profile-guided inlining. They make LTO compilation scalable
by isolating the compilation of different modules or clusters
so they can be parallelized and distributed. They perform
whole-program analysis on a summary or index, and they
pass analysis results and optimization decisions to parallelized
compilations for execution. Such frameworks greatly speed
up LTO compilation, but they make profile adjustment across
modules based on inlining decision impossible.

To mitigate the aforementioned challenges, and to maximize
the benefit of context-sensitive profiling and inlining, we present
a context-sensitive pre-inliner that runs before compilation as
part of offline profile generation to make global top-down inline
decisions with profile and inline cost estimates. The pre-inline
adjusts profile based on its own inline decision and persists its
decision in the generated profile so it can be passed to compiler,
which will try to honor the decision made by pre-inline when



possible. With inlining decision and profile adjustment done
in pre-inliner, the limitation imposed by ThinLTO can be
worked around so we can still have accurate post-inline profile.
The workflow of pre-inliner including adjustment for context-
sensitive profile is illustrated by Algorithm 2. For inliner, the
most important inputs to its heuristic are: 1) call site hotness,
2) cost of inlining, usually proxied by size increase estimate
after inlining a call site. Pre-inliner takes the whole-program
profile and the profiled binary as input. It uses the input profile
to build up call graph top-down order and to get call site
hotness. For cost of inlining, it retrieves the actual function
size from the previously built profiling binary as proxy, and it
also differentiates function sizes among different inlined copies
using a trie, which is usually more accurate than cost estimate
on early-stage IR. Algorithm 3 details how function size is
extracted from profiling binary. We observed that extracted size
can often accurately tell the pre-inliner that certain functions
will eventually be fully optimized away.

Algorithm 2 Top-down pre-inliner w/ context-sensitive profile
1: for Function in GetTopDownOrder(ProfiledCallGraph) do
2: Profile ← GetBaseProfileFor(Function)
3: for ContextProfile in GetContextProfilesFor(Function) do
4: if not ContextIsInlined(ContextProfile) then
5: MoveContextProfileToBase(Profile, ContextProfile)
6: end if
7: end for
8: FuncSize ← GetFuncSize(Profile)
9: Candidates ← GetCallees(Profile)

10: while Candidates not empty and FuncSize < Limit do
11: Candidate ← PopMostBeneficial(Candidates)
12: CandidateSize ← GetFuncSize(Candidate.Profile)
13: Hotness ← GetCallHotness(Candidate)
14: if ShouldInline(CandidateSize, Hotness) then
15: MarkContextInlined(Candidate.Profile)
16: FuncSize ← FuncSize + CandidateSize
17: NewCandidates ← GetCallees(Candidate.Profile)
18: Enqueue(Candidates, NewCandidates)
19: end if
20: end while
21: end for

Algorithm 3 Compute context-sensitive inline cost
Input: Binary
Output: FuncSizeForContext

1: for Function in Binary do
2: Addr ← Function.StartAddr
3: while Addr <= Function.EndAddr do
4: InlinedFrames ← GetInlinedFrames(Addr)
5: InstrSize ← GetInstrSizeForAddr(Addr)
6: FuncSizeForContext[InlinedFrames] + = InstrSize
7: PopLeafFrames(InlinedFrames, 1)
8: while InlinedFrames not empty do
9: Size ← FuncSizeForContext[InlinedFrames]

10: if Size is unknown then
11: FuncSizeForContext[InlinedFrames] = 0
12: end if
13: PopLeafFrames(InlinedFrames, 1)
14: end while
15: Addr ← Addr + InstrSize
16: end while
17: end for

With context-sensitive profiling and the pre-inliner combined,
CSSPGO is able to further improve performance while reducing

code size for server workloads. We will discuss the results in
the next section.

IV. EVALUATION

This section evaluates our implementation of CSSPGO in
LLVM [17] using Meta’s production server workloads. We first
compare CSSPGO performance against AutoFDO and show
that CSSPGO can improve performance by 1-5% on LTO
optimized server workloads while generating smaller code.
In the case of HHVM workload [25], it can bridge 60% of
the performance gap between instrumentation-based PGO and
AutoFDO. We then demonstrate that pseudo-instrumentation
has negligible run-time overhead, in contrast with the 73%
slowdown from instrumentation on HHVM. Next, we conduct
profile quality analysis to quantify profile quality improvements
from CSSPGO. Additionally, we evaluate CSSPGO on an client
workload, the open-source Clang compiler [17], to demonstrate
that the improvements from CSSPGO is workload agnostic
and not limited to Meta’s server workloads.

A. Performance and Code Size

All performance evaluations are done on Skylake DE servers
with 64GB RAM. The compiler we used is a fork of LLVM-15,
with CSSPGO implemented on top. The server workloads we
used are among the most compute-intensive workloads that
consume about one-third of total CPU cycles of Meta’s server
fleet, namely, AdRanker, AdRetriever, AdFinder, HHVM and
HaaS, all optimized with ThinLTO [12]. AdRanker, AdRetriever
and AdFinder are backend services for Ads retrieval and
ranking. HHVM [25] is a JIT compiler for Hack and PHP that
powers the Facebook website. HaaS is a JavaScript remote-
execution service based on Hermes [26]. We evaluate the
performance of CSSPGO in a production environment, with
live traffic being duplicated and flow through two different
systems built from identical source but using different PGO
variants on top of ThinLTO. We use the same production setup
for profile collection as well. For HHVM, CPU utilization is
controlled as an invariant by a load driver, so RPS (requests
per second) alone is used as the performance metric. For other
workloads, performance improvements can manifest as either
CPU utilization drop or throughput increase or both, so a
synthesized performance metric is used to capture both CPU
and throughput changes. The synthesized metric represents
the total CPU utilization improvements with throughput delta
translated to equivalent CPU utilization changes.

PGO performance is affected by both profile quality and
the optimization pipeline, as a result different PGO variants
make different tweaks and tunings for their optimizations to
accommodate their own profile quality. For the purpose of
measuring the impact of CSSPGO, pseudo-instrumentation and
context-sensitivity specifically, we try to align the optimization
pipeline to the extent possible for fair comparison. Since
CSSPGO by default uses Profi [10], an advanced profile
inference component, we also turned on Profi for AutoFDO in
our experiments. Additionally, we enabled function splitting,
Ext-TSP block layout [15] for all variants of PGO we



tested. However, we acknowledge that discrepancies in the
optimization pipelines still exist, with the most notable one
being value-profile-based optimizations, which is an advantage
of instrumentation-based PGO.

The AutoFDO baseline setup we used represents the best
results we can get with AutoFDO. Note that we didn’t use
FS-AutoFDO [21] in our baseline. FS-AutoFDO is a recent
enhancement to AutoFDO that achieves separate late stage
profile annotation via multiplexing a single input profile
using discriminator encoding techniques, and it can improve
AutoFDO performance when profile and code generation is very
stable between iterations. We didn’t use FS-AutoFDO because
in production environment, such stability requirement often
cannot be met, in which case its late stage profile annotation
may degrade profile quality. For our production workloads, we
found that FS-AutoFDO enhancement led to regression for this
reason, so we evaluated AutoFDO without such enhancement
for the best baseline results.

Fig. 6: CSSPGO performance comparison with AutoFDO and
Instr PGO

Fig. 6 shows the performance improvements from CSSPGO
using AutoFDO as the baseline. For the 5 server workloads we
evaluated, CSSPGO delivers an additional 1-5% performance
on top of AutoFDO. We also tried to compare CSSPGO
performance against instrumentation-based PGO. On HHVM,
CSSPGO is able to deliver 1.5% extra performance while
instrumentation-based PGO delivers 2.4% performance on
top of AutoFDO. Unfortunately, we were not able to get
instrumentation-based PGO numbers for other workloads. Due
to the overhead from instrumentation, profiling runs were
too slow, which triggered internal health checks to fail and
processes being terminated before they were able to serve live
traffic. The incomplete data for instrumentation-based PGO is
also a reflection of the challenges for its large-scale adoption in
production due to its overhead. On HHVM, the only workload
with instrumentation-based PGO data, CSSPGO bridged over
60% of the performance gap between instrumentation-based
PGO and AutoFDO without any additional overhead on profile
collection.

Fig. 6 also shows a breakdown of CSSPGO performance.
While full CSSPGO leverages both pseudo-instrumentation
and context-sensitivity, probe-only CSSPGO is a variant of

CSSPGO that only uses pseudo-instrumentation. Experiments
show that pseudo-instrumentation contributes to 38-78% of
CSSPGO’s total performance gain, with the rest coming from
context-sensitivity.

Fig. 7: CSSPGO code size comparison with AutoFDO

Note that CSSPGO also produces smaller code compared to
AutoFDO on the workloads we tested, with the exception of
HaaS. Fig. 7 compares code size between AutoFDO, probe-
only CSSPGO and full CSSPGO. We can see that CSSPGO
produces noticeably smaller code across 4 of the 5 workloads,
however code size from probe-only CSSPGO is bigger than full
CSSPGO. This is explained by more selective inlining from
context-sensitive profile and the new pre-inliner only available
in full CSSPGO. For HaaS, the code size changes are small,
all within 1%. Given that HaaS sees the biggest performance
improvement from CSSPGO, there may be opportunity to fine
tune CSSPGO and its pre-inliner in particular to use the code
size savings to achieve more aggressive optimization and better
overall performance.

Fig. 8: Performance of pseudo-instrumentation

B. Profiling Overhead

Earlier in the paper, we described pseudo-instrumentation as
a flexible framework for low overhead, high-quality profiling.
In this section, we measure the profiling overhead of our
implementation that prioritizes low overhead over high accuracy.
With experiments in production environment, we demonstrate



that the overhead from pseudo-instrumentation is negligible
on server workloads. Fig. 8 shows a performance comparison
between pseudo-instrumentation enabled and disabled, using
the same production setup mentioned above. The performance
delta is within the P95 confidence interval shown by the
error bar for three workloads. Surprisingly, AdRetriever’s
performance is slightly better with pseudo-instrumentation. This
can happen when the inserted pseudo-probes block undesirable
optimizations. In contrast, we measured 73% slow down when
profiling instrumented HHVM as shown in Table I.

Fig. 9: Size overhead of metadata

Fig. 9 lists the size overhead of the pseudo-instrumentation
metadata for each server workload, expressed as a percentage
of the total binary size including the debug information
generated under the -g2 option. The size overhead of the debug
information for the same binary is also shown in the figure for
comparison. On average, the pseudo-instrumentation metadata
takes about 25% of the binary size. As discussed earlier, the
metadata is self-contained, i.e., no relocation references to or
from the rest part of the binary, therefore it can be split out of
the binary to minimize the concern on binary size if needed.
The metadata won’t be loaded at run time, so it won’t impact
application’s performance.

C. Profile Quality

The performance improvements from CSSPGO shown above
can partly be attributed to the profile-quality improvements
that CSSPGO brings. In this section, we take a quantitative
approach to analyze profile quality and demonstrate its direct
improvements. We evaluate CSSPGO’s profile quality using a
block-overlap metric with instrumentation-based PGO profile
as the ground truth and compare CSSPGO against AutoFDO
[2]. The block-overlap metric is commonly used to compare the
similarity of two profiles with respect to a common control-flow
graph.

Let V be the set of basic blocks in a flow graph of a function.
We define block overlap degree for the function as

D(V ) =
∑
v∈V

min
( f(v)∑

v∈V f(v)
,

gt(v)∑
v∈V gt(v)

)
,

where gt(v) is the ground-truth count, i.e, the instrumentation-
based PGO count for a block v, and f(v) is the CSSPGO
or sampling-based PGO count for the same block. The block
overlap degree for a program is then defined as a weighted
aggregation over all functions:

D(P ) =
∑
V ∈P

D(V )

∑
v∈V f(v)∑

V ∈P

∑
v∈V f(v)

.

We only use HHVM to measure the profile quality since
it is the only workload we were able to optimize with
instrumentation-based PGO successfully for reasons mentioned
earlier. Table I shows block overlap and profiling overhead for
HHVM with AutoFDO, CSSPGO and instrumentation-based
PGO. The block overlap degree for CSSPGO is 92.3%, while
it is 88.2% for AutoFDO. CSSPGO pushes the profile quality
a step closer to the instrumentation-based PGO. Also note that
CSSPGO achieved better profile quality while keeping profiling
overhead near-zero, which is significantly lower than the 73%
overhead from instrumentation-based PGO.

TABLE I: HHVM profile quality and profiling overhead

AutoFDO CSSPGO Instr PGO

Block overlap 88.2% 92.3% 100%
Profiling overhead 0% 0.04% 73.06%

D. Client Workloads

We now evaluate CSSPGO with client workloads to demon-
strate that the improvements from CSSPGO are workload-
agnostic, even though CSSPGO was developed with a focus on
Meta’s production server workloads. We choose the well-known
open-source Clang compiler [17] and its release/17.x branch
as the benchmark and measure its bootstrapping performance.

We first built an initial version of Clang for training purpose,
with the same setup used in server workloads evaluation earlier.
Next, the training compiler was launched to build Clang again
with the default options. The collected profile data was then
used in a subsequent build to produce PGO optimized Clang.
Lastly, we used the PGO optimized Clang to build Clang itself
again for performance evaluation.

Using AutoFDO as the baseline, we have measured a 2.8%
performance improvement from CSSPGO with a 5.5% code
size reduction, and a 6.6% improvement from instrumentation-
based PGO with a 34% code size reduction. Compared to server
workloads, there’s a larger gap between sampling-based PGO
and instrumentation-based PGO on client workloads, which
has to do with the limitation of sampling-based profiling itself.
Server workloads usually have long running steady state which
enables sampling-based profiling to have decent coverage on all
executed code path. On the other hand, with the same training
setup, sampling-based profiling may cover a much smaller
portion of executed code on client workloads comparing to
instrumentation-based profiling. This can lower the ceiling
for sampling-based PGO performance on client workloads.
However, despite the unique challenge for client workloads,



CSSPGO is still able to provide a meaningful performance
uplift.

V. RELATED WORK

Profile-guided optimization has been used extensively to
improve program performance. Over the past decades, research
in this area has focused on lowering profiling and training cost,
improving profile accuracy and augmenting code optimizations.
Ball et al. [18], [19] lowered instrumentation’s run-time cost
by optimizing probe placement using minimal spanning tree.
This technique dramatically reduced the run time overhead
and is widely used by commercial compilers nowadays.
Unfortunately as discussed throughout the paper, the cost is still
unacceptable in some circumstances. Cho et al. [6] proposed
a novel instrumentation framework to reduce profiling cost
by combining dynamic instrumentation and sampling. They
reported an average 3% to 6% run time slowdown which is still
undesirable for production deployment. In addition, it is unclear
how profile correlation from binary counters to the source could
be done and what level of profile accuracy can be achieved.
As hardware performance monitoring units (PMU) evolve and
feature more reliable and precise sampling, they have been
used to achieve zero-cost profiling on modern processors and
drive profile guided compiler optimization [2], [3], [5], [27]–
[32]. Our system also takes advantage of hardware PMU to
be highly-efficient while achieving a higher profile accuracy.

While hardware PMUs help reduce profiling overhead, due
to their sampling nature and hardware limitations, they often
do not provide consistent samples along all program paths
thus results in inferior profile accuracy. Research has been
done in this area to mitigate the problem. Levin et al. [9]
developed a profile inference framework based on minimal
cost flow (MCF) to smooth sample profile inconsistencies.
Advanced profile inference [10] has also been developed
to further mitigate the issue. Apart from hardware related
profile inconsistencies, these techniques also help mitigate
profile inaccuracies caused by compiler optimizations. Liu et
al. [8] studied sample inconsistencies from hardware point
of view. They unveiled that a higher profile accuracy can
be achieved by using multiple hardware event profiles. FS-
AutoFDO [21] is a recent enhancement to sampling-based
PGO that improves profile accuracy by using hierarchical
discriminators. As discussed previously, FS-AutoFDO needs
a stable profile and code generation between iterations to
achieve its peak performance. All works mentioned above can
be combined with CSSPGO to further boost profile accuracy.

Research has also been done in the area of extending profile
content to strengthen compiler optimizations for better code
quality. Ammons et al. [11] proposed an instrumentation-
based approach to achieve a flow- and context-sensitive profile.
However the advantage of CSSPGO is that its sampling-based
profile collection incurs little run time overhead. Recent effort
also uses a separate late-stage post-inline profile to improve
the context-sensitivity of instrumentation-based PGO [20]. It
requires an extra iteration of profiling and optimization, thus
can be prohibitive for large-scale adoption. Additionally, unlike

our work, the context-sensitivity achieved through separate post-
inline profile cannot be used to drive better inline decision.

VI. CONCLUSION

The ever increasing scale of modern data centers de-
mands more effective PGO solutions, while the diverse set
of workloads running in those data centers challenges the
scalability of PGO. In this paper, we present CSSPGO, a
balanced solution that can deliver better performance than
state-of-the-art sampling-based PGO while keeping profiling
and operational overhead at minimum. CSSPGO consists of
two components, pseudo-instrumentation and context-sensitive
profiler accompanied with a pre-inliner. Pseudo-instrumentation
provides a flexible framework for PGO implementations to
achieve a desired balance between profiling overhead and
profile quality. We demonstrated that pseudo-instrumentation
can achieve better profile quality without additional overhead.
The novel context-sensitive profiler we present offers a zero-
cost way to obtain context-sensitive profile without needing
separate profiling, and new pre-inliner mitigates the challenges
imposed by modern scalable LTO to fully leverage context-
sensitive profile for better inlining.

We evaluated our implementation of CSSPGO in LLVM
on Meta’s production server workloads. We demonstrated
CSSPGO can deliver 1-5% additional performance on top
of AutoFDO, a mature implementation of sampling-based
PGO, bridging over 60% of the performance gap between
AutoFDO and instrumentation-based PGO without additional
overhead. The balance between performance and usability
makes CSSPGO a practical solution for large-scale adoption. As
of today, CSSPGO is used to optimize over 75% of Meta’s data-
center CPU cycles. Although our study focuses on Meta’s server
workloads, we believe CSSPGO is workload agnostic and can
be applied to improve performance of other workloads too.
Future work may explore a different overhead and performance
balance with CSSPGO to further approach instrumentation-
based PGO performance.
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